Variation in Classifier Systems Across Chinese Dialects: Towards a Cognition-Based Semantic Approach

James H-Y. Tai
The Ohio State University

1. INTRODUCTION.

Classifier systems vary considerably across Chinese dialects. Firstly, the set of classifiers varies from one dialect to another. For example, Min, Yue, and Kejia dialects do not have the classifier gen (根) to refer to long objects, while other Chinese dialects do. On the other hand, only Southern Min and Kejia dialects have the classifier rui (蕊) in reference to flowers. Similarly, the classifier tsang (囊) in reference to trees and the classifier p'a (池) in reference to lamps are found only in Southern Min dialects. The classifier mbai (排) in reference to one of a pair is only found in the Southern Min dialects spoken on Hainan island. ¹

Secondly, the same classifier often exhibits different membership in different dialects. Thus, the classifier tiao (條) probably exists in all Chinese dialects, but the class

¹ Pinyin romanization is used for transcribing terms in this paper except several classifiers, as in some of the examples in the first paragraph, which are given broad phonetic transcription with superscripting of tone numbers.
of nouns with which it co-occurs varies greatly from one dialect to another. For example, the classifier *tiao* collocates with *cao* (草) and *qiao* (橋) in the Guangzhou dialect, with *toufa* (頭髮) in the Kejia dialect of Sixian, and with *zhen* (針) in the Fuzhou dialect. Tiao cannot collocate with these nouns in Mandarin dialects, however. Even within Mandarin dialects, *tiao* varies greatly with respect to the class of nouns with which it is associated. Thus, instead of *tiao*, the classifier *gen* is used for animals of long shape such as *niu* (牛), *yang* (羊), *zhu* (豬) and *she* (蛇) in the Mandarin spoken in Neijiang (Sichuan) and Yuncheng (Shanxi).

Thirdly, different dialects may use different classifiers for the same object. For example, for *yu* (魚), *tiao* is used in most of Mandarin, Gan, Kejia, Wu, Xiang and Yue dialects. However, *gen* is used in many Mandarin dialects in Sichuan, and some dialects in Shaanxi and Shanxi; *wei* (尾) is used in most of Southern Min dialects; *tou* (頭) is used in Northern Min including Fuzhou dialect and in Southern Wu including Wenzhou dialect; *zhi* (隻) is used in Nanchang; *ge* (個) is used in Qionghai on Hainan island.

Fourthly, speech patterns vary in accordance with age, education, family background, profession, and other sociolinguistic factors. The use of classifiers is no exception. Thus, among native speakers of Beijing, in reference to *gou* (狗), *tiao* is preferred to *zhi* for older speakers, while the reversed preference is true for younger speakers, especially those under the age of twenty.²

Variation in classifier systems across Chinese dialects is indeed crisscrossing confusingly, presenting a seemingly insoluble enigma to Chinese dialectologists. The main purpose of this paper is to propose a cognition-based semantic approach in order to identify some systematic differences among Chinese dialects with regard to classifiers. I hope the present pilot study will draw Chinese linguists’ attention to the importance of collecting more data on classifiers in Chinese dialects, and the need of such data for a further understanding of the affinity among Chinese dialects either from synchronic or diachronic.

² See Wang (in preparation) for a detailed discussion.
points of view.

2. METHODOLOGY.

2.1. Categories of classification.

Having examined classifiers in more than fifty languages, Allan (1977) proposes seven cognitively-based categories of classification as the bases for noun classification in natural languages. Every classifier is considered belonging to one or more of the seven categories of classification. These seven categories, with their key semantic features, are succinctly summarized in Lee (1987) as given in Table 1.

The first four categories in Table 1 will be of particular relevance to the treatment of Chinese classifiers in this paper. And concerning (i), only animacy will be dealt with here. An additional category in which attributes of parts are extracted is included, since it is relevant to Chinese classifiers.

<table>
<thead>
<tr>
<th>Table 1. Semantic Features of Noun Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Material</td>
</tr>
<tr>
<td>a. animacy</td>
</tr>
<tr>
<td>b. abstract nouns</td>
</tr>
<tr>
<td>c. material</td>
</tr>
<tr>
<td>(ii) Shape</td>
</tr>
<tr>
<td>a. saliently one-dimensional</td>
</tr>
<tr>
<td>b. two-dimensional</td>
</tr>
<tr>
<td>c. three-dimensional</td>
</tr>
<tr>
<td>(iii) Consistency</td>
</tr>
</tbody>
</table>
2. 2. Classifiers versus measure words.

In the literature on general linguistics as well as Chinese linguistics, classifiers are often treated on a par with measure words. For example, Allan has treated measure words as classifiers. Among the seven categories he has identified, the last two, i.e., arrangement and quanta listed in Table 1, primarily involve measure words. As noticed by Allan himself, the last two categories occur in languages like English which are not classifier languages. On the other hand, Chao (1968:584-620) has treated classifiers as 'individual measures.' Li and Thompson (1981:106) has blended classifiers with measure words and stated that "any measure word can be a classifier." Thus, they treat bang in shi bang rou (十磅肉) and qun in yi qun yang (一群羊) on an equal footing as tiao in yi tiao yu (一條魚) and
zhang in yi zhang zhi (一張紙).

However, in order to better understand the cognitive bases underlying the different classifier systems in Chinese dialects, it is not only feasible but also desirable to differentiate classifiers from measure words. Tai and Wang (1990:38) propose the following distinction between classifiers and measure words.

Classifier and Measure Word Distinction:

A classifier categorizes a class of nouns by picking out some salient perceptual properties, either physically- or functionally-based, which are permanently associated with the entities named by the class of nouns; a measure word does not categorize but denotes the quantity of the entity named by a noun.

In essence, this distinction amounts to saying that while a classifier is to 'categorize' an object in terms of its permanent salient property, a measure word is to 'measure' the quantity of an object or a collection of objects. This distinction between classifiers and measure words has a cognitive basis in that while classifiers refer to relatively 'inherent' or 'permanent' properties of an entity, measure words refer to 'contingent' or 'temporary' properties.

On this view, Chao's 'individual measures' are classifiers *par excellance*. His group measures, partitive measures, container measures, temporary measures, and standard measures are all measure words. However, some measure words also have the function of a classifier with respect to certain nouns. For instance, the group measure dui (對) functions like a classifier for nouns fufu (夫婦) and yuanyang (鸳鸯), since 'being a pair' is more or less a permanent property of the nouns in question. Similarly, partitive measures such as kuai (塊) and pian (片) can function as classifiers as well. In yi kuai rou (一塊肉) and yi pian rou (一片肉), they are partitive measures. However, in yi kuai shi tou (一塊石頭) and yi pian yezi (一片葉子), they can be treated as classifiers.³

³ Therefore, some classifier/measure words can be ambiguous in some contexts in that they can be either interpreted as classifiers or measures. For instance, yi ba daozi (一把刀子) can mean either 'one knife' or 'one handful of knives'.
The distinction between classifiers and measure words has a desirable consequence in describing different languages or different dialects of the same language. Thus, every language including English has measure words, but only some languages like Chinese have classifiers. Like Chinese, English has measure words such as pound and pile which are equivalent to bang (磅) and dui (堆) in Chinese; but, unlike Chinese, English does not have classifiers such as tiao (條) for counting fishes and ke (棵) for counting tress. Furthermore, many measure words such as pile and group presumably have similar, if not identical, meanings across languages. Thus, dui (堆) in Chinese has roughly the same meaning as pile in English; qun (群) in Chinese is semantically equivalent to group in English. In the same vein, we should not be surprised to find that measure words do not vary much in meaning from one Chinese dialect to another, while classifiers vary greatly across Chinese dialects.

This paper will be concerned with classifiers proper, and not with measure words.

2. 3. Objectivist versus experientialist view of categorization.

The classical view of categorization holds that categories are formed by certain objective properties inherent to the entities in the world, and that these properties are discrete, serving as necessary and sufficient criterial conditions for categorization. This view of categorization has been referred to as the objectivist view of categorization by Johnson (1987) and Lakoff (1987). This view of categorization is fundamentally important in the development of many branches of natural and social sciences. Mathematics, logic, and formal semantics and syntax totally depend on this classical view of categorization.

The objectivist view of categorization has been challenged in recent years by a wealth of new data on human categorization. Of special relevance to the study of classifiers in natural languages is the study of color categories in anthropological linguistics (Berlin and Kay 1969, Kay nad McDaniel 1978), the study of categorization of concrete objects in cognitive psychology (Rosch 1975, 1978; Tversky and Hemenway 1984), and the study of lexical categories in linguistics (Ross 1972, Hopper and Thompson 1984). From these
studies, a new theory of categorization, known as prototype theory, has emerged, influencing the thinking of many linguists. Departing from the classical objectivist view of categorization, the prototype theory holds that categorization can be achieved through associated with the prototypes or the central members. Members of a category may be associated with another in *family resemblance* (à la Wittgenstein). It is thus not necessary for all members of a category to possess a common objective property which criterially defines that category. In the prototype theory, categorization intimately ties with the notions of 'centrality' and 'gradation.' Thus, some members of a category, being prototypes, may serve as 'typical' or 'better' examples of that category than others. Rosch (1973, 1975) has shown that people regard some birds as more typical and better examples of the category than other birds. For example, robins and sparrows are judged as better examples of birds than pelicans and penguins.

The experiential view of categorization as advocated by Johnson (1987) and Lakoff (1987) incorporates the prototype theory of categorization. This view also holds that human categorization results primarily from the interaction between the human body and the physical environment in different socio-cultural contexts. Thus, objects can be grouped together through the same domain of experience. For example, in Dyirbal (Dixon 1982), fish and fishing implements both are in the same class, even though they might be expected to be in different classes, since fish are animate and fishing implements are neither animate nor food. Furthermore, Johnson and Lakoff have observed that human imagination plays a crucial role in categorization. Thus, metaphor, metonymy, and imagination all enter into the formation of a category, as clearly demonstrated by Lakoff (1986) in his explication of Dyirbal classifiers and the classifier *hon* in Japanese.

In this paper, we will show that the experiential view of categorization provides some useful perspectives for the explication of classifier systems in Chinese dialects.

2.4. Data Base.

The data base for the present study comprises the following sources:
(A) Hanyu Fangyan Cihui (漢語方言詞彙)

(B) Hanyu Fangyan Gaiyao (漢語方言概要)

(C) Survey conducted in Columbus, Ohio by Wang Lianqing during 1990 of classifiers at various sites in different dialect areas including Beijing.

(E) Relevant publications in Zhongguo Yuwen (中國語文) and Fangyan (方言).

3. RELEVANT COGNITIVE CATEGORIES IN CHINESE CLASSIFIER SYSTEMS.

3.1. Animacy.

In the great majority of Chinese dialects, animals are distinguished from inanimate objects and organisms. The general classifier for the category of animals is zhi (隻). The specific classifiers are pi (匹) for ma (馬); tiao (條) for gou (狗) and niu (牛); tou (頭) for niu, ma and zhu (豬); and kou (口) for zhu. Also, as noted in the introduction, the classifier gen (根) is used for animals with a long shape in some dialects, and the classifier wei (尾) is used in Southern Min for yu (魚), she (蛇) and other animals and insects with a 'rope-like' shape. Except for the classifier pi, these specific classifiers clearly refer to the salient features of different animals. They override the general animal classifier zhi (隻).

In some dialects, ge (個), the general classifier for all sorts of entities, is also used for some animals; for example, Xinhui, Kaiping, and Enping in Guangdong, as well as Qionghai in Hainan.

4 See Liu (1965:184–187) for a detailed discussion of the historical origin and the development of the classifier pi (匹) in reference to animals. In many dialects, in reference to ma (馬), the classifier zhi (隻) or tou (頭) is used in the colloquial speech, with the classifier pi as a more literary expression.
There seems to be no general classifier for inanimate objects. One might be tempted to consider the general classifier *ge* as marking the category inanimacy. However, it makes more sense to treat *ge* as a general classifier with a default value signalling simply existent entities. Specific classifiers for inanimate objects in Chinese dialects are preponderant in number. Just for *shu* (樹) alone, there are at least eight classifiers used across different dialects: *ke* (棵), *gen* (根), *zhu* (株), *tou* (頭), *po* (頸), *dou* (兜), *cong* (叢), and *tiao* (條). The semantic basis of each of the eight classifiers is nevertheless discernible, if not readily transparent. Thus, *tiao* and *gen* associate the ‘tree’ with the class of long objects; *tou* with the salient ‘head-like’ leafed part of a plant; *ke*, *zhu*, and *po* with the trunk of a plant; *dou* with the stem of a plant; and *cong* with the collection of leaves on the trunk of a plant.

A general observation can be made. In Chinese dialects, while there is a general classifier *zhi* for animals, there is no clear corresponding general classifier for plants.

In most of the Chinese dialects, human beings (人) are classified separately from animals by means of the general classifier *ge*. However, in some of the Kejia dialects in the Pearl River Delta region, the animal classifier *zhi* is used for human beings as well.

3. 2. Shape.

The category of shape has traditionally been divided into the three major subcategories: long, flat, and round. Allan (1977) prefers to replace them with one-dimensional, two-dimensional, and three-dimensional, his reasons being that the latter terms are more precise and suitable in accounting for some cross-linguistic classification of nouns better than the former terms. However, it will be seen in the discussion below that both sets of terms are needed in order to adequately describe the salient cognitive features underlying the Chinese classifier systems.

5 The classifier *kou* (口) is also used for *ren* (人) in reference to the number of a household as in *yi jia si kou ren* (一家四口人) ‘a household of four persons’.
3.2.1 Longness.

In Tai and Wang's (1990) semantic study of the classifier tiao in Mandarin Chinese, longness of shape is identified as the cognitive basis of that classifier. However, there are many nouns referring to long objects which do not take tiao as the classifier. In section 3.1, we noted that many nouns referring to animals with a long shape take zhi (隻) rather than tiao, zhi being the default marker for the cognitive category 'animacy'. But to account for the distribution of tiao along with gen (根) and zhi (枝), Tai and Wang propose that each of the three classifiers has its own salient perceptual property which serves as the typicality condition for categorization: namely, one-dimensional extension in length for tiao, three-dimensionality of a long, rigid object for gen, and the cylindricity of a long, rigid object for zhi (枝). The three-way distinction can be illustrated by the following examples:

(1) yi tiao she 一條蛇
 yi tiao yu 一條魚
 yi tiao huanggua 一條黃瓜
 yi tiao dengzi 一條梔子

(2) yi gen gunzi 一根棍子
 yi gen huochai 一根火柴
 yi gen zhen 一根針
 yi gen ganzhe 一根甘蔗

(3) yi zhi bi 一枝筆
 yi zhi laizhu 一枝蠟燭
 yi zhi qiang 一枝槍
 yi zhi xiangyan 一枝香煙

Tai and Wang recognize that the distribution in (1) to (3) represents the norm for educated Mandarin speakers. However, for some individuals, there is overlapping between
Variation in Classifier Systems Across Chinese Dialects

tiao and gen on one hand, and between gen and zhi on the other hand. For example, for some Mandarin speakers, gen instead of tiao is used for huanggua, and for some other speakers gen instead of zhi is used for qiang and xiangyan. For qiang, the classifier gan (桿) is also used. Regardless of this kind of variation among speakers, the three-way cognitive distinction among tiao, gen, and zhi which Tai and Wang propose can be regarded as a typicality condition restricting the variation.

One striking fact of categorization involving the three classifiers mentioned above is that only tiao can be used to refer to nouns like lu (路), he (河) and jie (街). This kind of extension can be explained by the assumption that the salient perceptual feature of tiao involves only the one-dimensional extension in length. This assumption can also account for the difference between yi tiao xian (一條線) and yi gen xian (一根線). The expression yi tiao xian denotes a one-dimensional 'line' on a two-dimensional plane. The expression yi gen xian denotes 'thread', a three-dimensional object. Therefore, in spite of the fact that the classifier tiao is used for three-dimensional objects such as huanggua, yu and she, the salient perceptual feature of the noun class categorized by tiao is still that of one-dimensional extension in length.

In most dialects of Mandarin Chinese, among the gua (瓜) class, only those with a long shape take the classifier tiao; for example, huanggua (黃瓜) and sigua (絲瓜). Those which do not have a long shape take the general classifier ge; for example, xigua (西瓜) and donggua (冬瓜). Similarly, only long-shaped maojin (毛巾) and dengzi (凳子) take tiao. Otherwise, the classifier kuai (塊) is used for maojin and the classifier zhang (張) or ge (個) is used for dengzi.

I have earlier noted that for long-shaped objects, some Mandarin dialects in Sichuan, Shaanxi and Shanxi prefer gen to tiao even in reference to animals such as niu (牛), yu (魚), and she (蛇). In these dialects, tiao is nevertheless used to refer to he (河) and jie (街). The cognitive distinction between tiao and gen proposed by Tai and Wang fits well with the use of gen in these dialects, since animals are three-dimensional after all.
James H-Y. Tai

In most dialects of Yue, Min, and Kejia, the classifier gen is not used. In these dialects, there is no contrast between tiao and gen. Instead, the distinction is between tiao and zhi. While Yue dialects use tiao for a large number of three-dimensional objects (e.g. yi tiao chai (一條柴) and yi tiao zhugan (一條竹竿)), Min dialects use zhi to refer to these objects. In reference to he (河) and jie (街), these dialects consistently use tiao.

Based on the above observations, it is safe to conclude that across Chinese dialects, the cognitive basis of tiao is the salient one-dimensional extension in length and that gen or zhi is the three-dimensionality of long objects. For those dialects which have all of the three classifiers, a further distinction is made between gen and zhi with respect to the salient perceptual feature of cylindricity.

It is interesting to note here that the classifier wei (尾) is used for nouns such as yu (魚), she (蛇) and niqiu (泥鰍) in most of the Southern Min and Kejia dialects. The class of nouns categorized by wei refers to animate, movable, living beings which have the long shape of a rope and which do not have legs to stand up.

3. 2. 2. Flatness.

It is a well known fact that Mandarin Chinese use the classifier zhang (張) to categorize zhi (紙), zuozi (桌子), and chuang (床). For many native speakers of Mandarin, the category of zhang extends to cover yizi (椅子) and dengzi (凳子), since they all have a flat surface like zuozi.

In most Yue dialects and some Kejia dialects the classifier zhang is also used to refer to bei (被) and dao (刀). In Mandarin dialects, either tiao or chuang (床) is used for bei, and ba (把) is used for dao.

In Southern Min dialects, the classifier zhang is also used for xin (信) and jiqi (機器). The difference between the classifier feng (封) for xin in Mandarin and zhang in Southern Min can be interpreted as reflecting two salient features of a letter, the envelope of a

6 Further examples include yi wei huichong (一尾蛔蟲) 'one roundworm', yi wei xia (一尾蝦) 'one shrimp', and yi wei long (一尾龍) in Southern Min.
letter in Mandarin but that of the letter paper itself in Southern Min. The use of zhang for
jiqi in Southern Min can also be properly interpreted, since the basic meaning of zhang is
'to extend.'

In most Yue dialects including Guangzhou, a distinction is made between kau 22 (舊)
and fa:i 33 (塊). Both correspond to kuai (塊) in Mandarin. However, fa:i 33 refers to
objects with a flat surface.

3. 2. 3. Roundness.

In Southern Min dialects, regardless of the size, nouns with reference to roundish ob-
jects take the classifier li (粒). Thus, xigua (西瓜), donggua (冬瓜), qiu (球), dan (蛋)
, and mi (米) form a class under the classifier li. However, in Mandarin, Yue, Kejia and
other dialects, only the relatively small roundish objects such as mi (米) and shazi (砂子)
take the classifier li. Furthermore, Mandarin dialects, more than Yue and Kejia dialects,
use ke (顆) instead of li for small roundish objects.

3. 3. Size.

We now turn to size, and discuss consistency later. We noted in the preceding section
that in reference to the roundish objects in Mandarin, Yue, Kejia and other dialects, only
those of relatively small size use the classifier li (粒). Also in many Chinese dialects, the
classifier tou (頭) is used for relatively large animals such as niu (牛) and ma (馬) but not
for gou (狗) and mao (貓). The classifier zuo (座) in most Chinese dialects also refer to
massive and solid objects such as shan (山), qiao (橋), and dalou (大樓).

3. 4. Consistency.

We use the perceptual feature 'rigidity' to distinguish gen and zhi from tiao. In most
Chinese dialects, tiao usually refers to more flexible objects, while gen or zhi refer to more
rigid objects. But the flexibility/rigidity distinction seems to be secondary to the shape dis-
tinction. Thus, in many dialects in Sichuan, Shaanxi and Shanxi, long shape is the central
determining perceptual feature; long things, whether flexible or rigid, take gen. In these
dialects, tiao is used for he (河) and jie (街), of which the salient perceptual feature is the
James H-Y. Tai

one-dimensional extension in length.

In many Chinese dialects, while the classifier kuai (塊) is used for hard objects, the classifier tuan (團) is used for objects of mushy substance. For example, the contrast between yi kuai tie (一塊鐵) and yi tuan mianhua (一團棉花) holds good in most dialects. The distinction between hard and mushy consistency again seems to be secondary to the shape. Thus, tuan usually refers to roundish objects of mushy substances, particularly with respect to its convex shape, while kuai refers to hard objects which are not roundish.

3. 5. Attributes Referring to Parts of Objects.

The classifiers tiao, gen and zhi all have their nominal origins referring to parts of the tree. It is obvious that they have been generalized to refer to many objects other than trees and plants. The classifier ba (把) for nouns such as daozi (刀子), jian (箭) and yizi (椅子) is still limited to those objects with a handle. Other parts classifiers in Chinese dialects include: wei (尾) in reference to yu (魚) and ling (領) in reference to shan (衫) in Southern Min and Hakka dialects, tou (頭) in reference to large animals in many dialects. In some Yue dialects and many Kejia dialects, the classifier tou is also used for plants. Similarly, kou (口) and yan (眼) are used as classifiers in many Chinese dialects. For example, in Mandarin Chinese yi kou zhu (一口豬) and yi kou jing (一口井) and in Yue dialects yi yan jing (一眼井) and yi yan zhen (一眼針).

4. SOME PROTOTYPES AND THEIR EXTENSION.

In most dialects, through metaphorical extension, the classifier tiao is used to classify not only concrete objects but also entities which are invisible and abstract. For example,

(4) yi tiao xinwen — 一條新聞
yi tiao falu — 一條法律
yi tiao hetong — 一條合同
yi tiao yijian — 一條意見
yi tiao liyou — 一條理由
Variation in Classifier Systems Across Chinese Dialects

yi tiao mingling

The metaphorical extension in (4) is structured on a domain of experience to which most native speakers can still relate, namely, the fact that news items, legal articles, agreements, opinions, and so forth, are traditionally written down on a page. It is significant to observe that the metaphorical extension is based on the long shape of an entity as imagined by the creative mind of human beings.

The use of the classifier pi (匹) for ma (马) in many dialects was based on the ‘matching-coupling’ relationship between humans and horses in ancient China (Cf. Liu 1965 and Yau 1988). It is nevertheless arbitrary to native speakers of these dialects. Based on the survey conducted by Wang Lianqing of fifty native speakers from Beijing, some native speakers also use pi to classify luo (骡) and luotuo (骆驼), but only one young speaker uses it for lü (骆). Thus, while ma is the central member for the classifier pi, luo and luotuo are less central, and lü is marginal. The graded extension is interesting and can be neatly accounted for by the prototype theory. Luo, being the hybrid of ma and lu, has a body shaped like a horse. Luotuo, though very different from ma in body shape, has a function like ma in human activities. 7

Also based on Wang’s survey, gou (狗) appears to be a prototype for lang (狼), for which only a few native speakers use tiao. In Beijing dialect, tiao is almost never used for mao (猫), but is used by some speakers for huli (狐狸).

In most dialects, she (蛇) serves as the prototype for the legendary animal long (龙). Thus, tiao is used for both she and long in most Mandarin and Yue dialects; wei is used for both in many Kejia and most Southern Min dialects; gen is used for both in many Sichuan dialects.

On the other hand, almost no dialect classifies eyu (鳢鱼) with yu (鱼) under the same classifier.

7 In Chao (1968:590), ma 马, luozi 骡子, and liu 驴 are the three examples listed under the classifier pi 匹. It appears that Chao would rather treat the three nouns on an equal footing than choose ma as the core member of the pi category.
5. CONCLUDING REMARKS.

It is obvious that classifiers in Chinese dialects categorize nouns into different classes. However, it is not immediately clear whether they represent some kind of conceptual structures or are merely arbitrary forms without a conceptual basis. It is shown here that Chinese classifiers, to a great extent, reflect human categorization in Chinese culture and subculture in different geographical regions. They are arbitrary only in those cases where the original salient conceptual basis has become conventionalized and the semantic motivation has fallen into oblivion.

We have observed that the classifier systems in Chinese dialects exhibit great differences. And we have shown that these differences can properly be understood in terms of different choices of certain cognitive categories underlying the different classifier systems of more than fifty languages studied by Allan (1977). To the extent we have succeeded in accounting for the differences as well as the similarities in classifiers across Chinese dialects in terms of cognitive-based categories, we have shown that the Chinese classifier systems are not merely arbitrary systems of classification but are, rather, cognition-based and semantically motivated. Within a universal set of cognitive categories, different dialects choose different salient perceptual properties for an object. Thus, for yu, in addition to the long shape (條), either the tail (尾) or the head (頭) can be chosen as the salient perceptual property of a fish. By the same token, in addition to tiao, the other seven classifiers for trees used in Chinese dialects are based on the imputed attributes of parts of a tree.

Like linguistic signs in general, a classifier can become 'fossilized' and become arbitrary by losing its original semantic motivation. The classifier pi (匹) for ma is a case in point. A classifier can also be borrowed from other dialects and presents an appearance of arbitrariness. On the other hand, in the face of continuous fossilization and abstraction, it is also human nature to counter abstraction and arbitrariness by reinterpreting abstract and arbitrary symbols with natural associations (Haiman1977, Joseph1989). Reinterpretation and restructuring of the Chinese written symbols on the basis of 'folk — 602 —
etymology' by ordinary people are quite common occurrences (Hsueh 1987). In the case of
the Chinese classifier systems, Tai and Wang (1990) observe that even though the classifier
system in the Standard Mandarin Chinese has a certain degree of dialectal mixture, speak-
ers of guoyu or putonghua tend to interpret this mixed system with some cognitive strate-
gies.

Very recently Hsin-I Hsieh (1989a, 1989b, 1990) proposes to view language structure
and language change as a result of continuous competition between natural iconic prin-
ciples and abstract grammatical principles. Based on Hsieh's theory, Claire Chang (1989a,
1989b) demonstrates that several important aspects of Chinese grammar, including serial
verb constructions, can better be understood as a result of interaction between the iconic
principles proposed by Tai (1985, 1989a, 1989b) and the abstract grammatical principles
proposed by James Huang (1982) within the framework of GB and Chu-Ren Huang
(1989) within LFG and GPSG. The interactionalism advocated by Hsieh and Chang has
thus presented a plausible view of human languages as systems comprising of different
degrees and forms of interaction between natural and arbitrary principles. Both Hsieh and
Tai have opted for the view that Chinese is more iconic than European languages in that it
contains more natural iconic principles. The present study of the classifier systems in Chi-
nese dialects thus provides another important evidence for the view shared by Hsieh and Tai.

A fundamentally important task of Chinese dialectology has to do with the grouping
and subgrouping of Chinese dialects. Traditionally, the grouping and subgrouping have
been primarily based on the distribution of some distinctive phonological features. This is
perhaps partly due to the focus of tradition of Chinese linguistics on historical phonology,
and partly due to the misconception that "there is practically one universal Chinese
grammar" (Chao1968:13). The preliminary investigation of classifier systems in this pa-
per shows the great divergencies among Chinese dialects. One important question naturally
arises: to what extent do the divergencies reflect the traditional grouping and subgrouping
based on phonology? Perhaps we can answer this question by adopting the quantification method developed by Chin-chuan Cheng (1987, 1988) in his important study of Chinese dialect affinity. However, the data base is quite limited, especially for non-Mandarin Chinese dialects. More data on classifiers is needed before we can apply Cheng's method to answer the question posed above.

In concluding this paper, we wish to emphasize that the classifier systems in Chinese dialects offer a wealth of data for the study of interaction between cognition and language, between form and function, between symbolization and reality, and above all, between culture and language in the long history of China. It is important for Chinese dialectologists to methodically collect as much data as possible from as many localities as possible for answering many important questions regarding dialect affinity in China and the cognitive basis of the Chinese language in its dialectal variation. Furthermore, with enough synchronic data base on classifiers across different Chinese dialects on the one hand, and historical data such as those provided by Liu (1965) and others on the other hand, we can begin to study the correspondence relationship between historical development and dialectal variation with respect to classifiers.⑧

REFERENCES

Allan, Keith.

Berlin, B. and P. Kay.

⑧ A good case in point is the set of classifiers used for yu (魚) across Chinese dialects. Among the five classifiers for yu, that is, tiao (條), tou (頭), zhi (隻), wei (尾), and ge (個), tiao and wei were not used for yu in Nanbeichao according to Liu's (1965) documentation. The use of wei for yu in Southern Min indicates that the classifier system of Southern Min may not have developed directly from the classifier system in Nanbeichao. The use of tiao for yu in so many modern Chinese dialects indeed poses an enigma for the search of historical and dialectal correspondence in classifiers.
Variation in Classifier Systems Across Chinese Dialects

Chang, Claire.

Chao, Yuen Ren.

Cheng, Chin-chuan.

Craig, Colette, ed.

Dixon, R. W.

Haiman, John.

Hopper, Paul and Sandra Thompson.
1984 'The discourse basis for lexical categories in universal grammar.' Language 60. 4:703–752.

Hsieh. Hsin-I.
1989a 'Time and imagery in Chinese.' In James Tai and Frank Hsueh, eds., pp. 45–94.
James H.-Y. Tai

20–21, 1989.

Huang, James.

Huang, Chu-Ren.

Johnson, Mark.

Joseph, Brian.

1989 ‘On the arbitrariness of linguistic signs.’ College of Humanities Inaugural Lecture, The Ohio State University.

Kay, Paul and C. K. McDaniels.

Lee, Michael.

Li, Charles and Sandra Thompson.

— 606 —
Rosch, Eleanor.

Ross, John.

Tai, James.

Tai, James and Frank Hsueh.

Tai, James and Lianqing Wang.

Tversky, Barbara and Kathleen Hemenway.

Wang, Lianqing.

References in Chinese

北京大学中文系Beijing Daxue. 漢語方言詞彙. 文字改革出版社. 北京1964

鄭錦全 Cheng, Chinchuan. 漢語方言親疏關係的計量研究. 中國語文. 1988第二期, 87-102頁。

薛鳳生 Hsueh, F.S. Frank. 現代漢語中的‘假借字’問題. 第二屆國際漢語教學討論會論文選. 北京語言學院出版社. 1988, 481-490頁。

高華年 Gao, Huanian. 廣州方言研究. 商務印書館. 1980

梁德曼 Liang, Deman. 四川方言與普通話. 四川人民出版社. 1982

劉世儒 Liu, Shiru. 魏晉南北朝釵文研究. 中華書局. 1965

呂叔湘 Lü, Suxiang. 現代漢語八百詞. 商務印書館. 1981

羅肇錦 Lo, Chaochin. 客家語法. 學生書局. 1984

游順釗 Yau, Shun-chiu. 從認知角度探討上古漢語名量詞的起源. 中國語文. 1988第五期, 361-369頁。

葉祥苓 Ye, Xiangling. 蘇州方言記略. 江蘇教育出版社. 1988

袁家華 Yuan, Jiahua. 漢語方言概要. 文字改革出版社. 北京1983 (第二版)。

詹伯慧、張日昇等 Zhan Bohui, Risheng Zhang. 珠江三角洲方言詞彙對照. 新世紀出版社. 1988

張振興 Zhang, Zhenxing. 臺灣閩南方言詞彙. 福建人民出版社. 1983
中國境內語言暨語言學

第一輯 漢 語 方 言

CHINESE LANGUAGES AND LINGUISTICS
I CHINESE DIALECTS

定價：精裝本新臺幣1,050元

(外幣定價按當時美元匯率加百分之十五臺幣計算)

編 者 中央研究院歷史語言研究所
出版 品 編 輯 委 員 會

發 行 者 中央研究院歷史語言研究所
台北市南港區

印刷者 文瀾印刷資訊處理有限公司
台北市環河南路二段211號

代售處 臺 灣 商 務 印 書 館
台北市重慶南路一段37號

臺灣 學 生 書 局
台北市和平東路一段198號

三 民 書 局
台北市重慶南路一段61號

中華民國八十一年五月出版

ISBN 957-671-049-9（精裝）